arXiv:math/0610850 [math.PR]AbstractReferencesReviewsResources
Ordered random walks
Peter Eichelsbacher, Wolfgang Konig
Published 2006-10-27Version 1
We construct the conditional version of $k$ independent and identically distributed random walks on $\R$ given that they stay in strict order at all times. This is a generalisation of so-called non-colliding or non-intersecting random walks, the discrete variant of Dyson's Brownian motions, which have been considered yet only for nearest-neighbor walks on the lattice. Our only assumptions are moment conditions on the steps and the validity of the local central limit theorem. The conditional process is constructed as a Doob $h$-transform with some positive regular function $V$ that is strongly related with the Vandermonde determinant and reduces to that function for simple random walk. Furthermore, we prove an invariance principle, i.e., a functional limit theorem towards Dyson's Brownian motions, the continuous analogue.