arXiv:math/0610392 [math.PR]AbstractReferencesReviewsResources
Théorème de Donsker et formes de Dirichlet
Published 2006-10-12Version 1
We use the language of errors to handle local Dirichlet forms with square field operator (cf [2]). Let us consider, under the hypotheses of Donsker theorem, a random walk converging weakly to a Brownian motion. If in addition the random walk is supposed to be erroneous, the convergence occurs in the sense of Dirichlet forms and induces the Ornstein-Uhlenbeck structure on the Wiener space. This quite natural result uses an extension of Donsker theorem to functions with quadratic growth. As an application we prove an invariance principle for the gradient of the maximum of the Brownian path computed by Nualart and Vives.
Journal: Bulletin des Sciences Math\'{e}matiques 129 (2004) 369-380
Categories: math.PR
Keywords: handle local dirichlet forms, donsker theorem, random walk, quite natural result, square field operator
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0509524 [math.PR] (Published 2005-09-22)
Continuum tree limit for the range of random walks on regular trees
arXiv:math/0102206 [math.PR] (Published 2001-02-27)
Random walks with badly approximable numbers
arXiv:0807.3506 [math.PR] (Published 2008-07-22)
On the adjustment coefficient, drawdowns and Lundberg-type bounds for random walk