arXiv:math/0609806 [math.PR]AbstractReferencesReviewsResources
Meixner polynomials and random partitions
Alexei Borodin, Grigori Olshanski
Published 2006-09-28Version 1
The paper deals with a 3-parameter family of probability measures on the set of partitions, called the z-measures. The z-measures first emerged in connection with the problem of harmonic analysis on the infinite symmetric group. They are a special and distinguished case of Okounkov's Schur measures. It is known that any Schur measure determines a determinantal point process on the 1-dimensional lattice. In the particular case of z-measures, the correlation kernel of this process, called the discrete hypergeometric kernel, has especially nice properties. The aim of the paper is to derive the discrete hypergeometric kernel by a new method, based on a relationship between the z-measures and the Meixner orthogonal polynomial ensemble. The present paper can be viewed as an introduction to another our paper where the same approach is applied to studying a dynamical model related to the z-measures (Markov processes on partitions, Prob. Theory Rel. Fields 135 (2006), 84-152; arXiv: math-ph/0409075).