arXiv:math/0609456 [math.AG]AbstractReferencesReviewsResources
Non-finiteness properties of fundamental groups of smooth projective varieties
Alexandru Dimca, Stefan Papadima, Alexander I. Suciu
Published 2006-09-15, updated 2007-03-20Version 3
For each integer n\ge 2, we construct an irreducible, smooth, complex projective variety M of dimension n, whose fundamental group has infinitely generated homology in degree n+1 and whose universal cover is a Stein manifold, homotopy equivalent to an infinite bouquet of n-dimensional spheres. This non-finiteness phenomenon is also reflected in the fact that the homotopy group \pi_n(M), viewed as a module over Z\pi_1(M), is free of infinite rank. As a result, we give a negative answer to a question of Koll'ar on the existence of quasi-projective classifying spaces (up to commensurability) for the fundamental groups of smooth projective varieties. To obtain our examples, we develop a complex analog of a method in geometric group theory due to Bestvina and Brady.