arXiv:math/0608741 [math.NT]AbstractReferencesReviewsResources
Remarks on a Problem of Eisenstein
Published 2006-08-30Version 1
The fundamental unit of $\Z[\sqrt{N}]$ for square-free $N=5 mod 8$ is either $\epsilon$ or $\epsilon^3$ where $\epsilon$ denotes the fundamental unit of the maximal order of $\Q(\sqrt{N})$. We give infinitely many examples for each case.
Comments: 4 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2305.18849 [math.NT] (Published 2023-05-30)
New characterization of the norm of the fundamental unit of $\mathbb{Q}(\sqrt M)$
On certain families of Drinfeld quasi-modular forms
arXiv:2411.19259 [math.NT] (Published 2024-11-28)
Maximal order for divisor functions and zeros of the Riemann zeta-function