arXiv Analytics

Sign in

arXiv:math/0608475 [math.AP]AbstractReferencesReviewsResources

On global attractors of the 3D Navier-Stokes equations

Alexey Cheskidov, Ciprian Foias

Published 2006-08-18, updated 2006-09-11Version 2

In view of the possibility that the 3D Navier-Stokes equations (NSE) might not always have regular solutions, we introduce an abstract framework for studying the asymptotic behavior of multi-valued dissipative evolutionary systems with respect to two topologies--weak and strong. Each such system possesses a global attractor in the weak topology, but not necessarily in the strong. In case the latter exists and is weakly closed, it coincides with the weak global attractor. We give a sufficient condition for the existence of the strong global attractor, which is verified for the 3D NSE when all solutions on the weak global attractor are strongly continuous. We also introduce and study a two-parameter family of models for the Navier-Stokes equations, with similar properties and open problems. These models always possess weak global attractors, but on some of them every solution blows up (in a norm stronger than the standard energy one) in finite time.

Related articles: Most relevant | Search more
arXiv:2009.14291 [math.AP] (Published 2020-09-29)
Second derivatives estimate of suitable solutions to the 3D Navier-Stokes equations
arXiv:1504.02918 [math.AP] (Published 2015-04-11)
Global regularity criterion for the 3D Navier-Stokes equations with large data
arXiv:1201.1609 [math.AP] (Published 2012-01-08, updated 2013-09-01)
Existence, uniqueness and smoothness of solution for 3D Navier-Stokes equations with any smooth initial velocity