arXiv:math/0608079 [math.RT]AbstractReferencesReviewsResources
Symmetric crystals and affine Hecke algebras of type B
Naoya Enomoto, Masaki Kashiwara
Published 2006-08-03, updated 2006-11-27Version 3
The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with the Lie algebra $gl_\infty$ or the affine Lie algebra $A^{(1)}_\ell$, and the irreducible representations correspond to the upper global bases. In this note, we formulate analogous conjectures for certain classes of irreducible representations of affine Hecke algebras of type B. We corrected typos.
Comments: Announcement paper, 9 pages
Journal: Proc. Japan Acad. 82, Ser. A (2006) 131--136
Keywords: affine hecke algebras, symmetric crystals, maximal unipotent subgroup, affine lie algebra, upper global bases
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2309.04829 [math.RT] (Published 2023-09-09)
Hermitian duals and generic representations for affine Hecke algebras
arXiv:1509.05991 [math.RT] (Published 2015-09-20)
A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2
arXiv:0910.1606 [math.RT] (Published 2009-10-08)
Periodic cyclic homology of affine Hecke algebras