arXiv Analytics

Sign in

arXiv:math/0606414 [math.PR]AbstractReferencesReviewsResources

The Rank of Random Graphs

Kevin P. Costello, Van H. Vu

Published 2006-06-17Version 1

We show that almost surely the rank of the adjacency matrix of the Erd\"os-R\'enyi random graph $G(n,p)$ equals the number of non-isolated vertices for any $c\ln n/n<p<1/2$, where $c$ is an arbitrary positive constant larger than 1/2. In particular, the giant component (a.s.) has full rank in this range.

Comments: 19 pages, no figures
Categories: math.PR, math.CO
Subjects: 15A52
Related articles: Most relevant | Search more
arXiv:math/0610459 [math.PR] (Published 2006-10-15, updated 2016-07-31)
The mixing time of the giant component of a random graph
arXiv:1811.07554 [math.PR] (Published 2018-11-19, updated 2020-11-28)
Upper Tails for Edge Eigenvalues of Random Graphs
arXiv:1504.01999 [math.PR] (Published 2015-04-08)
Random walks on the random graph