arXiv:math/0605284 [math.AP]AbstractReferencesReviewsResources
On Regions of Existence and Nonexistence of solutions for a System of $p$-$q$-Laplacians
Philippe Clement, Marta Garcia-Huidobro, Ignacio Guerra, Raul Manasevich
Published 2006-05-11Version 1
We give a new region of existence of solutions to the superhomogeneous Dirichlet problem $$ \quad \begin{array}{l} -\Delta_{p} u= v^\delta\quad v>0\quad {in}\quad B,\cr -\Delta_{q} v = u^{\mu}\quad u>0\quad {in}\quad B, \cr u=v=0 \quad {on}\quad \partial B, \end{array}\leqno{(S_R)} $$ where $B$ is the ball of radius $R>0$ centered at the origin in $\RR^N.$ Here $\delta, \mu >0$ and $ \Delta_{m} u={\rm div}(|\nabla u|^{m-2}\nabla u) $ is the $m-$Laplacian operator for $m>1$.
Comments: 17 pages, accepted in Asymptotic Analysis
Categories: math.AP
Related articles: Most relevant | Search more
Flat solutions of the 1-Laplacian equation
arXiv:1712.01135 [math.AP] (Published 2017-12-04)
Existence and nonexistence of solutions for p(x)-curl systems arising in electromagnetism
arXiv:1806.03490 [math.AP] (Published 2018-06-09)
Implicit equations involving the $p$-Laplacian operator