arXiv Analytics

Sign in

arXiv:math/0604107 [math.NT]AbstractReferencesReviewsResources

Heegner points and the rank of elliptic curves over large extensions of global fields

Florian Breuer, Bo-Hae Im

Published 2006-04-05, updated 2006-04-06Version 2

Let k be a global field, $\bar{k}$ a separable closure of k, and $G_k$ the absolute Galois group $\Gal(\bar{k}/k)$ of $\bar{k}$ over k. For every g in $G_k$, let $\bar{k}^g$ be the fixed subfield of $\bar{k}$ under g. Let E/k be an elliptic curve over k. We show that for each g in $G_k$, the Mordell-Weil group $E(\bar{k}^g)$ has infinite rank in the following two cases. Firstly when k is a global function field of odd characteristic and E is parametrized by a Drinfeld modular curve, and secondly when k is a totally real number field and E/k is parametrized by a Shimura curve. In both cases our approach uses the non-triviality of a sequence of Heegner points on E defined over ring class fields.

Comments: 12 pages
Categories: math.NT
Subjects: 11G05
Related articles: Most relevant | Search more
arXiv:1306.1410 [math.NT] (Published 2013-06-06)
Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve
arXiv:math/0406244 [math.NT] (Published 2004-06-11)
Mod p representations on elliptic curves
arXiv:math/0401289 [math.NT] (Published 2004-01-22)
Trace of Frobenius endomorphism of an elliptic curve with complex multiplication