arXiv:math/0602631 [math.GT]AbstractReferencesReviewsResources
Slice knots with distinct Ozsvath-Szabo and Rasmussen Invariants
Published 2006-02-27, updated 2006-03-11Version 2
As proved by Hedden and Ording, there exist knots for which the Ozsvath-Szabo and Rasmussen smooth concordance invariants, tau and s, differ. The Hedden-Ording examples have nontrivial Alexander polynomials and are not topologically slice. It is shown in this note that a simple manipulation of the Hedden-Ording examples yields a topologically slice Alexander polynomial one knot for which tau and s differ. Manolescu and Owens have previously found a concordance invariant that is independent of both tau and s on knots of polynomial one, and as a consequence have shown that the smooth concordance group of topologically slice knots contains a summand isomorphic to a free abelian group on two generators. It thus follows quickly from the observation in this note that this concordance group contains a subgroup isomorphic to a free abelian group on three generators.