arXiv Analytics

Sign in

arXiv:math/0602546 [math.NT]AbstractReferencesReviewsResources

Galois module structure of Milnor K-theory mod p^s in characteristic p

Jan Minac, Andrew Schultz, John Swallow

Published 2006-02-24, updated 2007-09-07Version 2

Let E be a cyclic extension of pth-power degree of a field F of characteristic p. For all m, s in N, we determine K_mE/p^sK_mE as a (Z/p^sZ)[Gal(E/F)]-module. We also provide examples of extensions for which all of the possible nonzero summands in the decomposition are indeed nonzero.

Comments: v2 (11 pages): minor corrections made
Journal: New York J. Math. 14 (2008), 225-233
Categories: math.NT, math.KT, math.RT
Subjects: 19D45, 12F10
Related articles: Most relevant | Search more
arXiv:math/0405503 [math.NT] (Published 2004-05-26, updated 2007-09-07)
Galois module structure of Milnor K-theory in characteristic p
arXiv:1106.3577 [math.NT] (Published 2011-06-17)
Galois scaffolds and Galois module structure in extensions of characteristic $p$ local fields of degree $p^2$
arXiv:math/0202224 [math.NT] (Published 2002-02-21)
Galois Module Structure of $p$th-Power Classes of Extensions of Degree p