arXiv Analytics

Sign in

arXiv:math/0601724 [math.GN]AbstractReferencesReviewsResources

Nonstandard Analysis in Topology: Nonstandard and Standard Compactifications

Sergio Salbany, Todor Todorov

Published 2006-01-30Version 1

\begin{abstrac} Let $(X,T) $ be a topological space, and $^{*}X$ a non--standard extension of $X$. There is a natural ``standard'' topology $^{S}T$ on $^{*}X$ generated by $^{*}G$, where $G\in T$. The topological space $(^{*}X,^{S}T) $ will be used to study compactifications of $(X,T)$ in a systematic way.

Comments: 5 pages
Journal: Journal of Symbolic Logic, Vol. 65, Number 4, Dec. 2000
Categories: math.GN, math.LO
Subjects: 03C90, 03H05, 54J05, 54D35, 54D60
Related articles: Most relevant | Search more
arXiv:1107.3323 [math.GN] (Published 2011-07-17)
Nonstandard Analysis in Topology
arXiv:1910.09186 [math.GN] (Published 2019-10-21)
On $κ$-bounded and $M$-compact reflections of topological spaces
arXiv:1705.04152 [math.GN] (Published 2017-05-11)
Introducing a new concept of distance on a topological space by generalizing the definition of quasi-pseudo-metric