arXiv:math/0601509 [math.FA]AbstractReferencesReviewsResources
Operator Segal Algebras in Fourier Algebras
Brian E. Forrest, Nico Spronk, Peter J. Wood
Published 2006-01-20Version 1
Let G be a locally compact group, A(G) its Fourier algebra and L1(G) the space of Haar integrable functions on G. We study the Segal algebra SA(G)=A(G)\cap L1(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of SA(G). We use it show that restriction operator u|->u|H:SA(G)->A(H), for some non-open closed subgroups H, is a surjective complete qutient map. We also show that if N is a non-compact closed subgroup, then the averaging operator tau_N:SA(G)->L1(G/N), tau_N u(sN)=\int_N u(sn)dn is a surjective complete quotient map. This puts an operator space perspective on the philosophy that SA(G) is ``locally A(G) while globally L1''. Also, using the operator space structure we can show that SA(G) is operator amenable exactly when when G is compact; and we can show that it is always operator weakly amenable. To obtain the latter fact, we use E. Samei's theory of hyper-Tauberian Banach algebras.