arXiv:math/0601409 [math.CO]AbstractReferencesReviewsResources
Determination of the two-color Rado number for $a_1x_1+...+a_mx_m=x_0$
Published 2006-01-17, updated 2007-12-24Version 5
For positive integers $a_1,a_2,...,a_m$, we determine the least positive integer $R(a_1,...,a_m)$ such that for every 2-coloring of the set $[1,n]={1,...,n}$ with $n\ge R(a_1,...,a_m)$ there exists a monochromatic solution to the equation $a_1x_1+...+a_mx_m=x_0$ with $x_0,...,x_m\in[1,n]$. The precise value of $R(a_1,...,a_m)$ is shown to be $av^2+v-a$, where $a=min{a_1,...,a_m}$ and $v=\sum_{i=1}^{m}a_i$. This confirms a conjecture of B. Hopkins and D. Schaal.
Journal: J. Combin. Theory Ser. A 115(2008), 345-353
Keywords: two-color rado number, determination, positive integer, monochromatic solution, precise value
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1608.00109 [math.CO] (Published 2016-07-30)
Monochromatic Solutions to Systems of Exponential Equations
On Monochromatic Solutions of Linear Equations Using At Least Three Colors
Rainbow arithmetic progressions
Steve Butler et al.