arXiv Analytics

Sign in

arXiv:math/0601409 [math.CO]AbstractReferencesReviewsResources

Determination of the two-color Rado number for $a_1x_1+...+a_mx_m=x_0$

Song Guo, Zhi-Wei Sun

Published 2006-01-17, updated 2007-12-24Version 5

For positive integers $a_1,a_2,...,a_m$, we determine the least positive integer $R(a_1,...,a_m)$ such that for every 2-coloring of the set $[1,n]={1,...,n}$ with $n\ge R(a_1,...,a_m)$ there exists a monochromatic solution to the equation $a_1x_1+...+a_mx_m=x_0$ with $x_0,...,x_m\in[1,n]$. The precise value of $R(a_1,...,a_m)$ is shown to be $av^2+v-a$, where $a=min{a_1,...,a_m}$ and $v=\sum_{i=1}^{m}a_i$. This confirms a conjecture of B. Hopkins and D. Schaal.

Journal: J. Combin. Theory Ser. A 115(2008), 345-353
Categories: math.CO, math.NT
Subjects: 05D10, 11B75, 11D04
Related articles: Most relevant | Search more
arXiv:1608.00109 [math.CO] (Published 2016-07-30)
Monochromatic Solutions to Systems of Exponential Equations
arXiv:2501.17136 [math.CO] (Published 2025-01-28, updated 2025-02-04)
On Monochromatic Solutions of Linear Equations Using At Least Three Colors
arXiv:1404.7232 [math.CO] (Published 2014-04-29, updated 2016-01-11)
Rainbow arithmetic progressions
Steve Butler et al.