arXiv Analytics

Sign in

arXiv:math/0601007 [math.PR]AbstractReferencesReviewsResources

Variations of the solution to a stochastic heat equation

Jason Swanson

Published 2005-12-31, updated 2007-11-22Version 3

We consider the solution to a stochastic heat equation. This solution is a random function of time and space. For a fixed point in space, the resulting random function of time, $F(t)$, has a nontrivial quartic variation. This process, therefore, has infinite quadratic variation and is not a semimartingale. It follows that the classical It\^{o} calculus does not apply. Motivated by heuristic ideas about a possible new calculus for this process, we are led to study modifications of the quadratic variation. Namely, we modify each term in the sum of the squares of the increments so that it has mean zero. We then show that these sums, as functions of $t$, converge weakly to Brownian motion.

Comments: Published in at http://dx.doi.org/10.1214/009117907000000196 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2007, Vol. 35, No. 6, 2122-2159
Categories: math.PR
Subjects: 60F17, 60G15, 60G18, 60H05, 60H15
Related articles: Most relevant | Search more
arXiv:0802.1152 [math.PR] (Published 2008-02-08, updated 2009-12-09)
Hiding a drift
arXiv:math/0308193 [math.PR] (Published 2003-08-20)
A central limit theorem for Gibbs measures relative to Brownian motion
arXiv:1208.6399 [math.PR] (Published 2012-08-31, updated 2013-02-13)
Brownian motion in the quadrant with oblique repulsion from the sides