arXiv Analytics

Sign in

arXiv:math/0512093 [math.NT]AbstractReferencesReviewsResources

A New Tower of Rankin-Selberg Integrals

David Ginzburg, Joseph Hundley

Published 2005-12-05Version 1

This document describes the authors' current research project: the evaluation of a tower of Rankin-Selberg integrals on the group E_6. We recall the notion of a tower, and two known towers, making observations about how the integrals within a tower may be related to one another via formal manipulations, and offering a heuristic for how the L-functions should be related to one another when the integrals are related in this way. A detailed description of the E_6 tower is then given.

Related articles: Most relevant | Search more
arXiv:2403.04727 [math.NT] (Published 2024-03-07)
On the evaluations of multiple $S$ and $T$ values of the form $S(\overset{{}_{(-)}}{2}, 1, \ldots, 1, \overset{{}_{(-)}}{1})$ and $T(\overset{{}_{(-)}}{2}, 1, \ldots, 1, \overset{{}_{(-)}}{1})$
arXiv:2106.12267 [math.NT] (Published 2021-06-23)
Rankin-Selberg integrals for ${\rm SO}_{2n+1}\times{\rm GL}_r$ attached to New- and Oldforms
arXiv:2306.07026 [math.NT] (Published 2023-06-12)
On gamma factors of Rankin--Selberg integrals for $\mathrm{U}_{2\ell} \times \mathrm{Res}_{E / F} \mathrm{GL}_n$