arXiv Analytics

Sign in

arXiv:math/0511524 [math.RT]AbstractReferencesReviewsResources

Classification of Quasifinite Modules over Lie Algebras of Matrix Differential Operators on the Circle

Yucai Su

Published 2005-11-21Version 1

We prove that an irreducible quasifinite module over the central extension of the Lie algebra of $N\times N$-matrix differential operators on the circle is either a highest or lowest weight module or else a module of the intermediate series. Furthermore, we give a complete classification of indecomposable uniformly bounded modules.

Comments: LaTeX, 10 pages
Journal: Proc. Amer. Math. Soc., 133 (2005), 1949-1957
Categories: math.RT, math.QA
Subjects: 17B10, 17B65, 17B66, 17B68
Related articles: Most relevant | Search more
arXiv:1210.7132 [math.RT] (Published 2012-10-26)
Classification of quasifinite representations of a Lie algebra related to Block type
arXiv:1709.03929 [math.RT] (Published 2017-09-12)
Simple modules over the Lie algebras of divergence zero vector fields on a torus
arXiv:math/0205297 [math.RT] (Published 2002-05-28)
Equivariant Operators between some Modules of the Lie Algebra of Vector Fields