arXiv Analytics

Sign in

arXiv:math/0510086 [math.GT]AbstractReferencesReviewsResources

A Borsuk-Ulam theorem for $(\mathbb Z_p)^k$-actions on products of (mod $p$) homology spheres

Yuri A. Turygin

Published 2005-10-05Version 1

It is proved that for a product action of $(\mathbb Z_p)^k$ on a product of (mod p) homology spheres $N^{n_1}\times...\times N^{n_k}$, where all $n_i$'s are assumed to be odd if $p$ is odd, and any continuous map $f\colon N^{n_1}\times...\times N^{n_k}\to \mathbb R^m$ the set $A(f)=\{x\in N^{n_1}\times...\times N^{n_k}| f(x)=f(gx) \forall g\in(\mathbb Z_p)^k\}$ has dimension at least $n_1+...+n_k-m(p^k-1)$, provided $n_i\ge mp^{i-1}(p-1)$ for all $i (1\le i\le k)$. Moreover, if $n_i\ge mp^{k-1}(p-1)$ for all $i(1\le i\le k)$ then the free action $\mu$ can be assumed arbitrary.

Comments: 10 pages
Categories: math.GT, math.AT
Subjects: 55M35, 55M10, 57S17
Related articles: Most relevant | Search more
arXiv:2308.15607 [math.GT] (Published 2023-08-29)
The Alexander trick for homology spheres
arXiv:1907.06276 [math.GT] (Published 2019-07-14)
Metric Thickenings, Borsuk-Ulam Theorems, and Orbitopes
arXiv:math/0610573 [math.GT] (Published 2006-10-18)
Suspensions of homology spheres