arXiv:math/0509684 [math.AG]AbstractReferencesReviewsResources
Under Spec Z
Published 2005-09-29, updated 2007-10-05Version 4
We use techniques from relative algebraic geometry and homotopical algebraic geometry in order to construct several categories of schemes defined "under Spec Z". We define this way the categories of N-schemes, F_1-schemes, S-schemes, S_+-schemes, and S_1-schemes, where from a very intuitive point of view N is the semi-ring of natural numbers, F_1 is the field with one element, S is the sphere ring spectrum, S_+ is the semi-ring spectrum of natural numbers and S_1 is the ring spectrum with one element. These categories of schemes are related by several base change functors, and they all possess a base change functor to Z-schemes (in the usual sense). Finally, we show how the linear group Gl_n and toric varieties can be defined as objects in certain of these categories.