arXiv:math/0506594 [math.PR]AbstractReferencesReviewsResources
Concentration around the mean for maxima of empirical processes
Published 2005-06-29Version 1
In this paper we give optimal constants in Talagrand's concentration inequalities for maxima of empirical processes associated to independent and eventually nonidentically distributed random variables. Our approach is based on the entropy method introduced by Ledoux.
Comments: Published at http://dx.doi.org/10.1214/009117905000000044 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2005, Vol. 33, No. 3, 1060-1077
Categories: math.PR
Keywords: empirical processes, talagrands concentration inequalities, eventually nonidentically distributed random variables, optimal constants, entropy method
Tags: journal article
Related articles: Most relevant | Search more
Entropy method for the left tail
arXiv:2303.11635 [math.PR] (Published 2023-03-21)
A tail estimate for empirical processes of multivariate Gaussian under general dependence
arXiv:math/0405354 [math.PR] (Published 2004-05-18)
Symmetrization approach to concentration inequalities for empirical processes