arXiv:math/0506579 [math.AG]AbstractReferencesReviewsResources
Semi-direct products of Lie algebras and their invariants
Published 2005-06-28, updated 2007-10-17Version 2
The goal of this paper is to extend the standard invariant-theoretic design, well-developed in the reductive case, to the setting of representation of certain non-reductive groups. This concerns the following notions and results: the existence of generic stabilisers and generic isotropy groups for finite-dimensional representations; structure of the fields and algebras of invariants; quotient morphisms and structure of their fibres. One of the main tools for obtaining non-reductive Lie algebras is the semi-direct product construction. We observe that there are surprisingly many non-reductive Lie algebras whose adjoint representation has a polynomial algebra of invariants. We extend results of Takiff, Geoffriau, Rais-Tauvel, and Levasseur-Stafford concerning Takiff Lie algebras to a wider class of semi-direct products. This includes $Z_2$-contractions of simple Lie algebras and generalised Takiff algebras.