arXiv:math/0506012 [math.DS]AbstractReferencesReviewsResources
Symplectic aspects of Aubry-Mather theory
Published 2005-06-01Version 1
We prove that the so-called Aubry and Mane sets introduced by John Mather in Lagrangian dynamics are symplectic invariants. In order to do so, we introduce a barrier in phase space, and propose definitions of Aubry and Mane sets for non-convex Hamiltonian systems. On montre que les ensembles dits d'Aubry et de Mane introduits par John Mather en dynamique Lagrangienne sont des invariants symplectiques. Pour ceci on introduit une barriere sur l'espace des phases, et on definit des ensembles d'Aubry et de Mather pour des systemes Hamiltoniens non convexes.
Journal: Duke Mathematical Journal 136, 3 (2007) 401-420
Categories: math.DS
Subjects: 37J50
Keywords: aubry-mather theory, symplectic aspects, mane introduits par john mather, systemes hamiltoniens non convexes, mane sets
Tags: journal article
Related articles: Most relevant | Search more
On the Aubry-Mather theory for symbolic dynamics
arXiv:1607.02943 [math.DS] (Published 2016-07-11)
Aubry-Mather Theory for Conformally Symplectic Systems
arXiv:1801.05612 [math.DS] (Published 2018-01-17)
Aubry-Mather theory for contact Hamiltonian systems