arXiv Analytics

Sign in

arXiv:math/0506012 [math.DS]AbstractReferencesReviewsResources

Symplectic aspects of Aubry-Mather theory

Patrick Bernard

Published 2005-06-01Version 1

We prove that the so-called Aubry and Mane sets introduced by John Mather in Lagrangian dynamics are symplectic invariants. In order to do so, we introduce a barrier in phase space, and propose definitions of Aubry and Mane sets for non-convex Hamiltonian systems. On montre que les ensembles dits d'Aubry et de Mane introduits par John Mather en dynamique Lagrangienne sont des invariants symplectiques. Pour ceci on introduit une barriere sur l'espace des phases, et on definit des ensembles d'Aubry et de Mather pour des systemes Hamiltoniens non convexes.

Journal: Duke Mathematical Journal 136, 3 (2007) 401-420
Categories: math.DS
Subjects: 37J50
Related articles: Most relevant | Search more
arXiv:math/0608431 [math.DS] (Published 2006-08-16, updated 2007-07-04)
On the Aubry-Mather theory for symbolic dynamics
arXiv:1607.02943 [math.DS] (Published 2016-07-11)
Aubry-Mather Theory for Conformally Symplectic Systems
arXiv:1801.05612 [math.DS] (Published 2018-01-17)
Aubry-Mather theory for contact Hamiltonian systems