arXiv Analytics

Sign in

arXiv:math/0504569 [math.CO]AbstractReferencesReviewsResources

Some Arithmetic Properties of the q-Euler Numbers and q-SaliƩ Numbers

Victor J. W. Guo, Jiang Zeng

Published 2005-04-28, updated 2006-08-11Version 2

For m>n\geq 0 and 1\leq d\leq m, it is shown that the q-Euler number E_{2m}(q) is congruent to q^{m-n}E_{2n}(q) mod (1+q^d) if and only if m\equiv n mod d. The q-Sali\'e number S_{2n}(q) is shown to be divisible by (1+q^{2r+1})^{\left\lfloor \frac{n}{2r+1}\right\rfloor} for any r\geq 0. Furthermore, similar congruences for the generalized q-Euler numbers are also obtained, and some conjectures are formulated.

Comments: 12 pages, see also http://math.univ-lyon1.fr/~guo
Journal: European J. Combin. 27 (2006), 884--895
Categories: math.CO
Subjects: 05A30, 05A15, 11A07
Related articles: Most relevant | Search more
arXiv:math/0508546 [math.CO] (Published 2005-08-27, updated 2005-08-31)
Arithmetic properties of q-Fibonacci numbers and q-Pell numbers
arXiv:math/0107162 [math.CO] (Published 2001-07-23, updated 2003-08-13)
Arithmetic properties of the adjacency matrix of quadriculated disks
arXiv:1104.4584 [math.CO] (Published 2011-04-23, updated 2012-10-19)
Enumeration formulas for generalized q-Euler numbers