arXiv Analytics

Sign in

arXiv:math/0504325 [math.GN]AbstractReferencesReviewsResources

On removing one point from a compact space

Gady Kozma

Published 2005-04-15Version 1

If B is a compact space and B\{pt} is Lindelof then B^k\{pt} is star-Linedlof for every cardinality k. If B\{pt} is compact then B^k\{pt} is discretely star-Lindelof. In particular, this gives new examples of Tychonoff discretely star-Lindelof spaces with unlimited extent.

Comments: 10 pages
Journal: Houston J. Math. 30 (2004), no. 4, 1115--1126
Categories: math.GN
Subjects: 54D20, 54B10, 54A25, 54D30
Related articles: Most relevant | Search more
arXiv:2301.06220 [math.GN] (Published 2023-01-16)
New bounds on the cardinality of Hausdorff spaces and regular spaces
arXiv:2302.02348 [math.GN] (Published 2023-02-05)
On the double density spectra of compact spaces
arXiv:1607.00517 [math.GN] (Published 2016-07-02)
On $σ$-countably tight spaces