arXiv Analytics

Sign in

arXiv:math/0504057 [math.AP]AbstractReferencesReviewsResources

The Hardy inequality and Nonlinear parabolic equations on Carnot groups

Ismail Kombe

Published 2005-04-04Version 1

In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation:\[ \begin{cases} \frac{\partial u}{\partial t}= \Delta_{\mathbb{G},p}u+V(x)u^{p-1} & \text{in}\quad \Omega \times (0, T), \quad 1<p<2, u(x,0)=u_{0}(x)\geq 0 & \text{in} \quad\Omega, u(x,t)=0 & \text{on}\quad \partial\Omega\times (0, T) \end{cases} \] where $ \Delta_{\mathbb{G},p}$ is the $p$-sub-Laplacian on Carnot group $ \mathbb{G}$ and $V\in L_{\text{loc}}^1(\Omega)$.

Related articles: Most relevant | Search more
arXiv:2308.03148 [math.AP] (Published 2023-08-06)
Improved Hardy inequality with logarithmic term
arXiv:1601.03418 [math.AP] (Published 2016-01-13)
Pointwise Schauder estimates of parabolic equations in Carnot groups
arXiv:1207.6480 [math.AP] (Published 2012-07-27, updated 2017-03-23)
Flat solutions of the 1-Laplacian equation