arXiv Analytics

Sign in

arXiv:math/0503661 [math.PR]AbstractReferencesReviewsResources

A strong invariance principle for associated random fields

Raluca M. Balan

Published 2005-03-29Version 1

In this paper we generalize Yu's [Ann. Probab. 24 (1996) 2079-2097] strong invariance principle for associated sequences to the multi-parameter case, under the assumption that the covariance coefficient u(n) decays exponentially as n\to \infty. The main tools that we use are the following: the Berkes and Morrow [Z. Wahrsch. Verw. Gebiete 57 (1981) 15-37] multi-parameter blocking technique, the Csorgo and Revesz [Z. Wahrsch. Verw. Gebiete 31 (1975) 255-260] quantile transform method and the Bulinski [Theory Probab. Appl. 40 (1995) 136-144] rate of convergence in the CLT.

Comments: Published at http://dx.doi.org/10.1214/009117904000001071 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2005, Vol. 33, No. 2, 823-840
Categories: math.PR
Subjects: 60F17, 60G60, 60K35
Related articles: Most relevant | Search more
arXiv:math/0608237 [math.PR] (Published 2006-08-10)
Strong invariance principle for dependent random fields
arXiv:1205.7022 [math.PR] (Published 2012-05-31)
Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus
arXiv:1012.2798 [math.PR] (Published 2010-12-13)
A strong invariance principle for nonconventional sums