arXiv:math/0503229 [math.GT]AbstractReferencesReviewsResources
Heegaard genus of the connected sum of m-small knots
Tsuyoshi Kobayashi, Yo'av Rieck
Published 2005-03-12, updated 2006-07-03Version 2
We prove that if $K_1 \subset M_1,...,K_n \subset M_n$ are m-small knots in closed orientable 3-manifolds then the Heegaard genus of $E(#_{i=1}^n K_i)$ is strictly less than the sum of the Heegaard genera of the $E(K_i)$ ($i=1,...,n$) if and only if there exists a proper subset $I$ of $\{1,...,n\}$ so that $#_{i \in I} K_i$ admits a primitive meridian. This generalizes the main result of Morimoto in \cite{morimoto1}.
Comments: 34 pages. Final version, to appear in Communications in Analysis and Geometry
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:math/0212349 [math.GT] (Published 2002-12-27)
Morimoto's Conjecture for m-small knots
Degeneration of Heegaard genus, a survey
arXiv:1503.01188 [math.GT] (Published 2015-03-04)
A criterion for the Legendrian simplicity of the connected sum