arXiv:math/0408090 [math.DS]AbstractReferencesReviewsResources
Unipotent flows on the space of branched covers of Veech surfaces
Alex Eskin, Jens Marklof, Dave Witte Morris
Published 2004-08-06, updated 2005-05-09Version 2
There is a natural action of SL(2,R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup $U = {\begin{pmatrix} 1 & * 0 & 1 \end{pmatrix}}$. We classify the U-invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2,R)-orbit of the set of branched covers of a fixed Veech surface.) For the U-action on these submanifolds, this is an analogue of Ratner's Theorem on unipotent flows. The result yields an asymptotic estimate of the number of periodic trajectories for billiards in a certain family of non-Veech rational triangles, namely, the isosceles triangles in which exactly one angle is $2 \pi/n$, with $n \ge 5$ and $n$ odd.