arXiv:math/0407347 [math.GT]AbstractReferencesReviewsResources
Contact homology and one parameter families of Legendrian knots
Published 2004-07-21, updated 2005-11-06Version 2
We consider S^1-families of Legendrian knots in the standard contact R^3. We define the monodromy of such a loop, which is an automorphism of the Chekanov-Eliashberg contact homology of the starting (and ending) point. We prove this monodromy is a homotopy invariant of the loop. We also establish techniques to address the issue of Reidemeister moves of Lagrangian projections of Legendrian links. As an application, we exhibit a loop of right-handed Legendrian torus knots which is non-contractible in the space Leg(S^1,R^3) of Legendrian knots, although it is contractible in the space Emb(S^1,R^3) of smooth knots. For this result, we also compute the contact homology of what we call the Legendrian closure of a positive braid and construct an augmentation for each such link diagram.