arXiv:math/0407238 [math.FA]AbstractReferencesReviewsResources
On convexified packing and entropy duality
S. Artstein, V. Milman, S. J. Szarek, N. Tomczak-Jaegermann
Published 2004-07-14Version 1
A 1972 duality conjecture due to Pietsch asserts that the entropy numbers of a compact operator acting between two Banach spaces and those of its adjoint are (in an appropriate sense) equivalent. This is equivalent to a dimension free inequality relating covering (or packing) numbers for convex bodies to those of their polars. The duality conjecture has been recently proved (see math.FA/0407236) in the central case when one of the Banach spaces is Hilbertian, which - in the geometric setting - corresponds to a duality result for symmetric convex bodies in Euclidean spaces. In the present paper we define a new notion of "convexified packing," show a duality theorem for that notion, and use it to prove the duality conjecture under much milder conditions on the spaces involved (namely, that one of them is K-convex).