arXiv:math/0407139 [math.PR]AbstractReferencesReviewsResources
Concentration of permanent estimators for certain large matrices
Shmuel Friedland, Brian Rider, Ofer Zeitouni
Published 2004-07-08Version 1
Let A_n=(a_{ij})_{i,j=1}^n be an n\times n positive matrix with entries in [a,b], 0<a\le b. Let X_n=(\sqrta_{ij}x_{ij})_{i,j=1}^n be a random matrix, where {x_{ij}} are i.i.d. N(0,1) random variables. We show that for large n, \det (X_n^TX_n) concentrates sharply at the permanent of A_n, in the sense that n^{-1}\log (\det(X_n^TX_n)/perA_n)\to_{n\to\infty}0 in probability.
Journal: Annals of Probability 2004, Vol. 14, No. 3, 1559-1576
Categories: math.PR
Subjects: 15A52
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0905.1909 [math.PR] (Published 2009-05-12)
Concentration of random determinants and permanent estimators
arXiv:math/0501466 [math.PR] (Published 2005-01-26)
On the concentration of Sinai's walk
arXiv:2010.09877 [math.PR] (Published 2020-10-19)
Concentration of solutions to random equations with concentration of measure hypotheses