arXiv:math/0312059 [math.AG]AbstractReferencesReviewsResources
Gromov-Witten theory and Donaldson-Thomas theory, I
D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande
Published 2003-12-02, updated 2004-06-05Version 3
We conjecture an equivalence between the Gromov-Witten theory of 3-folds and the holomorphic Chern-Simons theory of Donaldson-Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the change of variables, exp(iu)=-q, where u is the genus parameter of GW theory and q is charge parameter of DT theory. The conjecture is proven for local Calabi-Yau toric surfaces.
Comments: 31 pages, revised version
Categories: math.AG
Related articles: Most relevant | Search more
arXiv:math/0610516 [math.AG] (Published 2006-10-17)
Remark on a conjecture of Mukai
arXiv:math/0007201 [math.AG] (Published 2000-07-01)
Newton polygons and formal groups: Conjectures by Manin and Grothendieck
arXiv:math/0110166 [math.AG] (Published 2001-10-16)
On a conjecture of Cox and Katz