arXiv:math/0311293 [math.DG]AbstractReferencesReviewsResources
Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15
Charles P. Boyer, Krzysztof Galicki, János Kollár, Evan Thomas
Published 2003-11-17Version 1
In a recent article the first three authors proved that in dimension $4m+1$ all homotopy spheres that bound parallelizable manifolds admit Einstein metrics of positive scalar curvature which, in fact, are Sasakian-Einstein. They also conjectured that all such homotopy spheres in dimension $4m-1, m\geq2$ admit Sasakian-Einstein metrics \cite{BGK}, and proved this for the simplest case, namely dimension $7.$ In this paper we describe computer programs that show that this conjecture is also true for 11-spheres and 15-spheres. Moreover, a program is given that determines the partition of the 8610 deformation classes of Sasakian-Einstein metrics into the 28 distinct oriented diffomorphism types in dimension $7.$