arXiv:math/0311269 [math.OC]AbstractReferencesReviewsResources
Bounded-From-Below Solutions of the Hamilton-Jacobi Equation for Optimal Control Problems with Exit Times: Vanishing Lagrangians, Eikonal Equations, and Shape-From-Shading
Published 2003-11-16Version 1
We study the Hamilton-Jacobi equation for undiscounted exit time control problems with general nonnegative Lagrangians using the dynamic programming approach. We prove theorems characterizing the value function as the unique bounded-from-below viscosity solution of the Hamilton-Jacobi equation which is null on the target. The result applies to problems with the property that all trajectories satisfying a certain integral condition must stay in a bounded set. We allow problems for which the Lagrangian is not uniformly bounded below by positive constants, in which the hypotheses of the known uniqueness results for Hamilton-Jacobi equations are not satisfied. We apply our theorems to eikonal equations from geometric optics, shape-from-shading equations from image processing, and variants of the Fuller Problem.