arXiv:math/0307205 [math.NT]AbstractReferencesReviewsResources
Integral models in unramified mixed characteristic (0,2) of hermitian orthogonal Shimura varieties of PEL type, Part I
Published 2003-07-15, updated 2012-03-27Version 7
Let $(G,X)$ be a Shimura variety of PEL type such that $G_{{\bf Q}_2}$ is a split ${\bf GSO}_{2n}$ group with $n\ge 2$. We prove the existence of the integral canonical models of ${\rm Sh}(G,X)/H_2$ in unramified mixed characteristic $(0,2)$, where $H_2$ is a hyperspecial subgroup of $G({\bf Q}_2)$.
Comments: 44 pages. Final version to appear in J. Ramanujan Math. Soc
Journal: J. Ramanujan Math. Soc. 27 (2012), no. 4, 425--477
Keywords: hermitian orthogonal shimura varieties, unramified mixed characteristic, shimura variety, pel type, integral models
Tags: journal article
Related articles: Most relevant | Search more
Integral models in unramified mixed characteristic (0,2) of hermitian orthogonal Shimura varieties of PEL type, Part II
arXiv:2105.02286 [math.NT] (Published 2021-05-05)
Data for Shimura varieties intersecting the Torelli locus
arXiv:2405.04464 [math.NT] (Published 2024-05-07)
Ekedahl-Oort strata and the supersingular locus in the GU(q-2,2) Shimura variety