arXiv:math/0307053 [math.RT]AbstractReferencesReviewsResources
Card shuffling and the decomposition of tensor products
Published 2003-07-03Version 1
Let H be a subgroup of a finite group G. We use Markov chains to quantify how large r should be so that the decomposition of the r tensor power of the representation of G on cosets on H behaves (after renormalization) like the regular representation of G. For the case where G is a symmetric group and H a parabolic subgroup, we find that this question is precisely equivalent to the question of how large r should be so that r iterations of a shuffling method randomize the Robinson-Schensted-Knuth shape of a permutation. This equivalence is rather remarkable, if only because the representation theory problem is related to a reversible Markov chain on the set of representations of the symmetric group, whereas the card shuffling problem is related to a nonreversible Markov chain on the symmetric group. The equivalence is also useful, and results on card shuffling can be applied to yield sharp results about the decomposition of tensor powers.