arXiv Analytics

Sign in

arXiv:math/0306422 [math.GR]AbstractReferencesReviewsResources

The proof of Birman's conjecture on singular braid monoids

Luis Paris

Published 2003-06-30, updated 2004-09-29Version 2

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

Comments: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper35.abs.html
Journal: Geom. Topol. 8(2004) 1281-1300
Categories: math.GR, math.GT
Subjects: 20F36, 57M25, 57M27
Related articles: Most relevant | Search more
arXiv:math/0309339 [math.GR] (Published 2003-09-20)
On the singular braid monoid
arXiv:0910.1727 [math.GR] (Published 2009-10-09, updated 2009-12-08)
On certain permutation representations of the braid group
arXiv:1304.7378 [math.GR] (Published 2013-04-27)
About presentations of braid groups and their generalizations