arXiv Analytics

Sign in

arXiv:math/0305041 [math.NT]AbstractReferencesReviewsResources

A lower bound for the canonical height on elliptic curves over abelian extensions

Joseph H. Silverman

Published 2003-05-01Version 1

Let E/K be an ellptic curve defined over a number field, let h be the canonical height on E, and let K^ab be the maximal abelian extension of K. Extending work of M. Baker, we prove that there is a positive constant C(E/K) so that every nontorsion point P in E(K^ab) satisfies h(P) > C(E/K).

Journal: Journal of Number Theory 104 (2004), 353--372
Categories: math.NT, math.AC
Subjects: 11G05, 11G10, 14G25, 14K15
Related articles: Most relevant | Search more
arXiv:math/9907018 [math.NT] (Published 1999-07-02, updated 2001-06-08)
Canonical heights on elliptic curves in characteristic p
arXiv:1902.08435 [math.NT] (Published 2019-02-22)
A statistical view on the conjecture of Lang about the canonical height on elliptic curves
arXiv:1709.08121 [math.NT] (Published 2017-09-23)
A lower bound on the canonical height for polynomials