arXiv:math/0303107 [math.RT]AbstractReferencesReviewsResources
Ad-nilpotent ideals of a Borel subalgebra: generators and duality
Published 2003-03-09Version 1
It was shown by Cellini and Papi that an ad-nilpotent ideal determines certain element of the affine Weyl group, and that there is a bijection between the ad-nilpotent ideals and the integral points of a simplex with rational vertices. We give a description of the generators of ad-nilpotent ideals in terms of these elements, and show that an ideal has $k$ generators if and only it lies on the face of this simplex of codimension $k$. We also consider two combinatorial statistics on the set of ad-nilpotent ideals: the number of simple roots in the ideal and the number of generators. Considering the first statistic reveals some relations with the theory of clusters (Fomin-Zelevinsky). The distribution of the second statistic suggests that there should exist a natural involution (duality) on the set of ad-nilpotent ideals. Such an involution is constructed for the series A,B,C.