arXiv:math/0212179 [math.NA]AbstractReferencesReviewsResources
High Probability Analysis of the Condition Number of Sparse Polynomial Systems
Gregorio Malajovich, J. Maurice Rojas
Published 2002-12-12Version 1
Let F:=(f_1,...,f_n) be a random polynomial system with fixed n-tuple of supports. Our main result is an upper bound on the probability that the condition number of f in a region U is larger than 1/epsilon. The bound depends on an integral of a differential form on a toric manifold and admits a simple explicit upper bound when the Newton polytopes (and underlying covariances) are all identical. We also consider polynomials with real coefficients and give bounds for the expected number of real roots and (restricted) condition number. Using a Kahler geometric framework throughout, we also express the expected number of roots of f inside a region U as the integral over U of a certain {\bf mixed volume} form, thus recovering the classical mixed volume when U = (C^*)^n.