arXiv Analytics

Sign in

arXiv:math/0211353 [math.AG]AbstractReferencesReviewsResources

Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II)

Antoine Douai, Claude Sabbah

Published 2002-11-22, updated 2003-04-08Version 2

We give an explicit description of the canonical Frobenius structure attached (by the results of the first part of this article) to the polynomial f(u_0,...,u_n)=w_0u_0+...+w_nu_n restricted to the torus u_0^{w_0}...u_n^{w_n}=1, for any family of positive integers w_0,...,w_n such that gcd(w_0,...,w_n)=1.

Comments: 22 pages, 3 figures, LaTeX + smf classes available at http://smf.emath.fr/Publications/Formats/index.html Typos corrected
Journal: in Frobenius manifolds (Quantum cohomology and singularities), Hertling, C. and Marcolli, M. eds, Aspects of Mathematics, vol. E36, Vieweg, 2004, p. 1-18
Categories: math.AG, math.CV
Subjects: 32S40, 32S30, 32G34, 32G20, 34Mxx
Related articles: Most relevant | Search more
arXiv:math/0211352 [math.AG] (Published 2002-11-22, updated 2003-04-08)
Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)
arXiv:1601.05468 [math.AG] (Published 2016-01-20)
Coamoebas of polynomials supported on circuits
arXiv:0712.3691 [math.AG] (Published 2007-12-21, updated 2008-08-05)
Curvature of classifying spaces for Brieskorn lattices