arXiv:math/0204314 [math.AG]AbstractReferencesReviewsResources
Sur une conjecture de Mukai
L. Bonavero, C. Casagrande, O. Debarre, S. Druel
Published 2002-04-25Version 1
Generalizing a question of Mukai, we conjecture that a Fano manifold $X$ with Picard number $\rho_X$ and pseudo-index $\iota_X$ satisfies $\rho_X (\iota_X-1) \le \dim(X)$. We prove this inequality in several situations: $X$ is a Fano manifold of dimension $\le 4$, $X$ is a toric Fano manifold of dimension $\le 7$ or $X$ is a toric Fano manifold of arbitrary dimension with $\iota_X \ge \dim(X)/3+1$. Finally, we offer a new approach to the general case.
Comments: 21 pages, in french
Categories: math.AG
Related articles: Most relevant | Search more
On the Picard number of divisors in Fano manifolds
arXiv:math/0110166 [math.AG] (Published 2001-10-16)
On a conjecture of Cox and Katz
Beyond a conjecture of Clemens