arXiv Analytics

Sign in

arXiv:math/0204314 [math.AG]AbstractReferencesReviewsResources

Sur une conjecture de Mukai

L. Bonavero, C. Casagrande, O. Debarre, S. Druel

Published 2002-04-25Version 1

Generalizing a question of Mukai, we conjecture that a Fano manifold $X$ with Picard number $\rho_X$ and pseudo-index $\iota_X$ satisfies $\rho_X (\iota_X-1) \le \dim(X)$. We prove this inequality in several situations: $X$ is a Fano manifold of dimension $\le 4$, $X$ is a toric Fano manifold of dimension $\le 7$ or $X$ is a toric Fano manifold of arbitrary dimension with $\iota_X \ge \dim(X)/3+1$. Finally, we offer a new approach to the general case.

Comments: 21 pages, in french
Categories: math.AG
Subjects: 14J45, 14E30, 14M25
Related articles: Most relevant | Search more
arXiv:0905.3239 [math.AG] (Published 2009-05-20, updated 2011-12-20)
On the Picard number of divisors in Fano manifolds
arXiv:math/0110166 [math.AG] (Published 2001-10-16)
On a conjecture of Cox and Katz
arXiv:math/9911161 [math.AG] (Published 1999-11-21, updated 2000-05-03)
Beyond a conjecture of Clemens