arXiv Analytics

Sign in

arXiv:math/0110238 [math.NT]AbstractReferencesReviewsResources

Some new formulas for $π$

Gert Almkvist, Christian Krattenthaler, Joakim Petersson

Published 2001-10-22, updated 2002-10-10Version 3

We show how to find series expansions for $\pi$ of the form $\pi=\sum_{n=0}^\infty {S(n)}\big/{\binom{mn}{pn}a^n}$, where S(n) is some polynomial in $n$ (depending on $m,p,a$). We prove that there exist such expansions for $m=8k$, $p=4k$, $a=(-4)^k$, for any $k$, and give explicit examples for such expansions for small values of $m$, $p$ and $a$.

Comments: 28 pages, LaTeX; some important references added
Journal: Experiment. Math. 12 (2003), 441-456.
Categories: math.NT, math.CA
Subjects: 40A25, 11B65, 11Y60, 65B10
Related articles: Most relevant | Search more
arXiv:math/0312097 [math.NT] (Published 2003-12-04)
On small values of the Riemann zeta-function on the critical line and gaps between zeros
arXiv:2107.03556 [math.NT] (Published 2021-07-08)
Some Remarks on Small Values of $τ(n)$
arXiv:2005.10714 [math.NT] (Published 2020-05-21)
Small values of $| L^\prime/L(1,χ) |$