arXiv:math/0108193 [math.CO]AbstractReferencesReviewsResources
Partial-sum analogues of the Rogers-Ramanujan identities
Published 2001-08-28, updated 2002-08-26Version 2
A new type of polynomial analogue of the Rogers-Ramanujan identities is proven. Here the product-side of the Rogers-Ramanujan identities is replaced by a partial theta sum and the sum-side by a weighted sum over Schur polynomials.
Comments: 15 pages, AMS-LaTeX
Journal: J. Combin. Theory Ser. A 99 (2002), 143--161
Keywords: rogers-ramanujan identities, partial-sum analogues, partial theta sum, polynomial analogue, schur polynomials
Tags: journal article
Related articles: Most relevant | Search more
Dedekind's eta-function and Rogers-Ramanujan identities
Hall--Littlewood functions and the A_2 Rogers--Ramanujan identities
arXiv:2006.03878 [math.CO] (Published 2020-06-06)
Tiling proofs of Jacobi triple product and Rogers-Ramanujan identities