arXiv Analytics

Sign in

arXiv:math/0104190 [math.PR]AbstractReferencesReviewsResources

Conditional Expectation as Quantile Derivative

Dirk Tasche

Published 2001-04-19Version 1

For a linear combination of random variables, fix some confidence level and consider the quantile of the combination at this level. We are interested in the partial derivatives of the quantile with respect to the weights of the random variables in the combination. It turns out that under suitable conditions on the joint distribution of the random variables the derivatives exist and coincide with the conditional expectations of the variables given that their combination just equals the quantile. Moreover, using this result, we deduce formulas for the derivatives with respect to the weights of the variables for the so-called expected shortfall (first or higher moments) of the combination. Finally, we study in some more detail the coherence properties of the expected shortfall in case it is defined as a first conditional moment. Key words: quantile; value-at-risk; quantile derivative; conditional expectation; expected shortfall; conditional value-at-risk; coherent risk measure.

Related articles: Most relevant | Search more
arXiv:math/0610515 [math.PR] (Published 2006-10-17)
A note on the invariance principle of the product of sums of random variables
arXiv:math/0505692 [math.PR] (Published 2005-05-31)
Rank Independence and Rearrangements of Random Variables
arXiv:2006.03328 [math.PR] (Published 2020-06-05)
A Note on Conditional Expectation for Markov Kernels