arXiv:math/0101212 [math.DG]AbstractReferencesReviewsResources
Scattering theory for p-forms on hyperbolic real space
Published 2001-01-25Version 1
Due to spectral obstructions, a scattering theory in the Lax-Phillips sense for the wave equation for differential p-forms on H^{n+1} cannot be developed. As a consequence, Huygens' principle for the wave equation in this context does not hold. If we restrict the class of forms and we consider the case of coclosed p-forms on H^{n+1}, when n=2p, Huygens' principle does hold and thus in this case incoming and outgoing subspaces can be constructed.
Comments: LaTeX, 10 pages
Related articles: Most relevant | Search more
arXiv:2007.06447 [math.DG] (Published 2020-07-13)
Scattering theory for the Hodge-Laplacian
Wave equations and the LeBrun-Mason correspondence
Scattering theory of the Hodge-Laplacian under a conformal perturbation