arXiv Analytics

Sign in

arXiv:math/0011170 [math.CO]AbstractReferencesReviewsResources

Examples and counterexamples for Perles' conjecture

Christian Haase, Günter M. Ziegler

Published 2000-11-22, updated 2001-07-19Version 2

The combinatorial structure of a d-dimensional simple convex polytope can be reconstructed from its abstract graph [Blind & Mani 1987, Kalai 1988]. However, no polynomial/efficient algorithm is known for this task, although a polynomially checkable certificate for the correct reconstruction was found by [Joswig, Kaibel & Koerner 2000]. A much stronger certificate would be given by the following characterization of the facet subgraphs, conjectured by M. Perles: ``The facet subgraphs of the graph of a simple d-polytope are exactly all the (d-1)-regular, connected, induced, non-separating subgraphs'' [Perles 1970]. We give examples for the validity of Perles conjecture: In particular, it holds for the duals of cyclic polytopes, and for the duals of stacked polytopes. On the other hand, we identify a topological obstruction that must be present in any counterexample to Perles' conjecture; thus, starting with a modification of ``Bing's house'', we construct explicit 4-dimensional counterexamples.

Comments: 11 pages, 14 figures, see also http://www.math.tu-berlin.de/~ziegler
Categories: math.CO
Subjects: 52B05, 05C75
Related articles: Most relevant | Search more
arXiv:2205.02296 [math.CO] (Published 2022-05-04)
Counterexample to a conjecture of Aharoni and Korman
arXiv:1709.00508 [math.CO] (Published 2017-09-01)
Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4
arXiv:math/0512493 [math.CO] (Published 2005-12-21)
A counterexample to a conjecture of Laurent and Poljak