arXiv Analytics

Sign in

arXiv:math/0009146 [math.AG]AbstractReferencesReviewsResources

On the moduli space of the Schwarzenberger bundles

Paolo Cascini

Published 2000-09-14, updated 2001-07-13Version 2

By proving a particular case of a conjecture of Drezet, we show that a component of the Maruyama scheme of the semi-stable sheaves on the projective space $\PP^n$ of rank n and Chern polynomial $(1+t)^{n+2}$ is isomorphic to the Kronecher moduli $N(n+1,2,n+2)$, for any odd n. In particular, such scheme defines a smooth minimal compactification of the moduli space of the rational normal curves in $\PP^n$, that generalizes the construction defined by G. Ellinsgrud, R. Piene and S. Str{\o}mme in the case $n=3$.

Comments: 10 pages. Minor changes suggested by the referee. To appear in Pacific Journal of Mathematics
Categories: math.AG
Subjects: 14F05
Related articles: Most relevant | Search more
arXiv:math/0302209 [math.AG] (Published 2003-02-18)
Theta functions on the moduli space of parabolic bundles
arXiv:0909.1458 [math.AG] (Published 2009-09-08, updated 2009-09-28)
Poincare polynomial of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces
arXiv:math/0411500 [math.AG] (Published 2004-11-22, updated 2009-03-24)
Hodge-type integrals on moduli spaces of admissible covers