arXiv:math/0002047 [math.NT]AbstractReferencesReviewsResources
On the approximation of the values of exponential function and logarithm by algebraic numbers
Yu. Nesterenko, M. Waldschmidt
Published 2000-02-07Version 1
A sharp explicit estimate is proved for the difference $e^\beta-\alpha$ when $\alpha$ and $\beta$ are nonzero algebraic numbers.
Comments: 17 pages. See also http://www.math.jussieu.fr/~miw/articles/ps/Nesterenko.ps and http://www.math.jussieu.fr/~nesteren/
Journal: Mat. Zapiski, 2, Diophantine approximations, Moscow (1996), 23--42
Categories: math.NT
Subjects: 11J82
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1412.4115 [math.NT] (Published 2014-12-12)
On approximation measures of $q$-exponential function
On two exponents of approximation related to a real number and its square
arXiv:1905.01678 [math.NT] (Published 2019-05-05)
Simultaneous approximation to values of the exponential function over the adeles